Refine Your Search

Topic

Author

Search Results

Technical Paper

Analytical Solution for Heat Flow in Cylinder and Its Application in Calculating Converter Skin Temperature

2000-03-06
2000-01-0301
In the catalytic converter, the thermal conductivity of the insulation material (intumescent mat) placed between the ceramic catalyst and the metal shell is strongly dependent on the temperature, resulting in the solving of non-linear heat conduction equations. In this paper, the analytic solution for the steady heat flow in a cylinder with temperature dependent conductivity is given. Using this analytic solution for the mat and including convection and radiation at the converter skin, an analytical expression for calculating converter skin temperature is obtained. This expression can be easily incorporated in a Fortran code to calculate the temperatures.
Technical Paper

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-11-01
2000-01-C045
The interdependence of consumer features, new electronic and electrical architectures and hybrid propulsion systems are examined. There are two major forces driving future vehicle electronic and electrical systems, one is consumer demand for comfort and safety, and two is the demand for reduced fuel consumption and emissions. These forces are linked by the use of electronics to control vehicle energy generation and usage while providing managed solutions to these demands. Automobile consumer features are discussed and the case is made that these features will require more electric power to be installed on the vehicle. The presence of this increased electric power will then enable the hybrid vehicle functions that will benefit fuel economy and emissions performance.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

Dependable E/E System Drivers and Application Issues

2000-11-01
2000-01-C064
Today, electrical/electronic systems like ABS/power brakes and electric power steering are all designed to enhance, not replace a mechanical function. If an electrical or electronic fault occurs, the function reverts to the base mechanical capability. Future E/E systems, such as steer-by-wire and brake-by- wire replace mechanical linkages with electrical or optical signals as in computer networks. While these systems offer many potential safety benefits, they will require different strategies for dependability, and as with any vehicle system, they will further require that dependability be an integral part of the overall E/E system design. This paper illustrates how by-wire systems drive different dependability requirements and discusses some key technologies that are emerging to meet these requirements.
Technical Paper

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-10-25
1999-01-3639
With ever more stringent CO2 emissions mandates, many automobile manufacturers are seeking the fuel economy benefits of diesel and lean-burn gasoline engines. At the same time the emissions standards that diesel and gasoline engines will have to meet in the next decade continue to reduce. Proposed solutions for meeting the stringent emissions standards all appear to have limitations, such as propensities to poisoning from sulfur, narrow operating temperature windows, and requirements for controls that give rapid rich excursions. Non-thermal plasma-catalyst systems have shown good performance in bench testing while being largely unaffected by these same issues. A two-stage system with a unique non-thermal plasma reactor combined with a zeolite-based catalyst has been constructed and shown to work over a wide temperature range.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Technical Paper

Multi-Sensor Modules with Data Bus Communication Capability

1999-03-01
1999-01-1277
Automotive multi-sensor modules, capable of vehicle-wide communications via a data bus will be discussed. Proper sensor grouping, packaging and device placement are key issues in the implementation of smart sensor modules. Sensors that are candidates for clustering include temperature, acceleration, angular rate, barometric pressure, chemical, and light sensors. The capability to accommodate a variety of data bus communication protocols is required to satisfy the majority of automotive systems. System integration must be considered when employing a smart sensor network through-out an automobile in a cost effective manner. This paper will cover the module issues associated with sensing, packaging, electronics, communication and system integration.
Technical Paper

Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emissions Standards

1999-08-17
1999-01-2927
This paper first reports on the benchmarking of a gasoline- fueled vehicle currently for sale in California that is certified to ULEV standards. Emissions data from this vehicle indicate the improvements necessary over current technology to meet SULEV tailpipe standards. Tests with this vehicle also show emissions levels with current technology under off-cycle conditions representative of real-world use. We then present Delphi's strategy of on-board partial oxidation (POx) reforming with gasoline-fueled, spark-ignition engines. On-board reforming provides a source of hydrogen fuel. Tests were run with bottled gas simulating the output of a POx reformer. Results show that an advanced Engine Management System with a small on-board reformer can provide very low tailpipe emissions both under cold start and warmed-up conditions using relatively small amounts of POx gas. The data cover both normal US Federal Test Procedure (FTP) conditions as well as more extreme, off-cycle operation.
Technical Paper

Globalization of the Design for Manufacturability/Assembly Process within the Automotive Wiring Assembly Business

1999-03-01
1999-01-0052
Automotive wiring assembly design and manufacturing has evolved from a locally based business to a global business. It is common today to engineer the design of a wiring assembly in one region of the world, to manufacture it in a second region, and to assemble it into the vehicle in a third region. This creates a need for global collaboration, training and communications. Design for Manufacturability (DFM) is a tool that can aid in this, in developing common processes globally, and reducing the cost and design complexity of the product in the early design stages. To develop a global DFM process, an organization must develop and implement a strategy. This paper will review the approach that an automotive wiring assembly supplier adopted. It will enumerate the benefits of developing a global Design for Manufacturability process, selecting a champion, and using a twelve-step plan to integrate DFM into each region.
Technical Paper

An Expandable Passive Optical Star Network Architecture for Automotive Applications

1999-03-01
1999-01-0303
When comparing vehicle communication architectures, the passive star network has been shown to be the highest fault tolerant system. Despite this trait, the passive star architecture has not been widely implemented due to its potential application limitations: insufficient node count and relatively short node lengths. These constraints arise from the basic function of the star, i.e. to evenly distribute a given amount of optical power to all nodes connected to the star without amplification or retransmission. This paper provides a solution to overcome the limitations of the passive star through the introduction of a new communication component, the Active Distribution Node (ADN). The ADN enables a passive star network to support larger node counts and significantly longer node lengths, without sacrificing fault tolerance or the low cost nature of the basic passive star architecture.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Closed Loop Start of Combustion Control Utilizing Ionization Sensing in a Diesel Engine

1999-03-01
1999-01-0549
This paper describes the technique of in-cylinder ionization sensing in a common rail diesel engine. The technology detects in real time, the start of combustion for both pilot and main combustion enabling the fuel control strategy to change from open to closed loop, thus, maintaining the desired start of combustion for all speeds and loads. Additionally, the ionization sensing enables the ECM to truly correct for changes in ignition delays caused by as an example a change in fuel cetane number or in air, fuel and engine temperature. The conclusions are that ionization sensing improves the ability to control a diesel engine and is a feasible technology for production vehicles.
Technical Paper

Concept to Production: Continuous Surface Keypad Switch

1999-03-01
1999-01-0413
The objective of this paper is to impart the challenges presented and the solutions derived to transform an artist's rendering into a production driver's door switch to be used in the interior of a high profile sports car. The challenges took many forms throughout the process, from data translation and packaging, to the final decorative issues. The results are a finished product providing a new approach to automotive interior switch design. It incorporates a low profile, continuous plane keypad with “soft touch” feel, tactile feedback, and integrated back lighting.
Technical Paper

Rheocasting of Semi-Solid A357 Aluminum

2000-03-06
2000-01-0059
The most popular aluminum alloys for semi-solid automotive components are A356 and A357. The density of rheocast semi-solid A357 is higher than die cast A357 and allows for both T5 and T6 heat treatment. The mechanical properties of rheocast semi-solid A357 was found to be more dependent upon the heat treat schedule and casting soundness than by the solid content of the semi-solid slurry or the globule shape.
Technical Paper

Implementation of Lead-Free Solder for Automotive Electronics

2000-03-06
2000-01-0017
Lead-free solders for electronics have been actively pursued since the early 1990's here and abroad for environmental, legislative, and competitive reasons. The National Center for Manufacturing Sciences (NCMS-US)1, the International Tin Research Institute (ITRI-UK)2, Swedish Institute of Production Engineering Research (IVF-Sweden)3, Japan Institute of Electronics Packaging (JIEP Japan)4, Improved Design Life and Environmentally Aware Manufacture of Electronics Assemblies by Lead-free Soldering (IDEALS-Europe)5, and, more recently, the National Electronics Manufacturing Initiative (NEMI-US)6 have been aggressively seeking lead-free solutions The automotive industry has some unique requirements that demand extensive testing of new materials and processes prior to implementation. The specific steps taken at Delphi Automotive Systems with lead-free solder will be described along with the lessons learned along the way.
Technical Paper

Delphi Electronic Throttle Control Systems for Model Year 2000;Driver Features, System Security, and OEM Benefits. ETC for the Mass Market

2000-03-06
2000-01-0556
Delphi has developed a second-generation Electronic Throttle Control system optimized for high volume applications. The Delphi system integrates several unique driver performance features, extensive security/diagnostics, and provides significant benefits for the vehicle manufacturer. For Model Year 2000, the Delphi ETC system has been successfully implemented on several popular SUVs and passenger cars built and sold around the world. The ETC driver features, security systems, and manufacturer benefits are presented as implemented on these Model Year 2000 applications.
Technical Paper

Comparison of Air Meter Interface Strategies for Engine Management Systems

2000-03-06
2000-01-0546
When an air meter is specified for an engine management system, air meter accuracy is given high priority. Air meter manufacturers characterize the accuracy of their products using laboratory instrumentation to measure the air meter output vs. flow characteristics. Ultimately the air meter is applied to an engine management system in a vehicle. The engine management system must use the information provided by the air meter without the benefit of laboratory instrumentation. Therefore, the entire measurement system must be considered in evaluating the effective accuracy. The most fundamental aspect to consider is the output signal format between the air meter and the engine management system. Two commonly available formats will be investigated: frequency and voltage.
Technical Paper

The Effect of Changes in Ambient and Coolant Radiator Inlet Temperatures and Coolant Flowrate on Specific Dissipation

2000-03-06
2000-01-0579
In this paper, a theoretical model for the calculation of Specific Dissipation (SD) was developed. Based on the model, the effect of ambient and coolant radiator inlet temperatures on SD has been predicted. Results indicate that the effect of ambient and coolant inlet temperature variation on SD is small (less than 2%) when ambient temperature varies between 10 and 50°C and coolant radiator inlet temperature between 60 and 120°C. The effect of coolant flowrate on SD is larger if there is a larger flowrate variation. Experimental results indicate that a 1 % variation at 1.0 L/s will cause about ±0.6% SD variation. Therefore the flowrate should be carefully controlled.
X